The influences of g proteins, ca, and k channels on electrical field stimulation in cat esophageal smooth muscle.
نویسندگان
چکیده
NO released by myenteric neurons controls the off contraction induced by electrical field stimulation (EFS) in distal esophageal smooth muscle, but in the presence of nitric oxide synthase (NOS) inhibitor, L-NAME, contraction by EFS occurs at the same time. The authors investigated the intracellular signaling pathways related with G protein and ionic channel EFS-induced contraction using cat esophageal muscles. EFS-induced contractions were significantly suppressed by tetrodotoxin (1 microM) and atropine (1 microM). Furthermore, nimodipine inhibited both on and off contractions by EFS in a concentration dependent meaner. The characteristics of 'on' and 'off' contraction and the effects of G-proteins, phospholipase, and K(+) channel on EFS-induced contraction in smooth muscle were also investigated. Pertussis toxin (PTX, a G(i) inactivator) attenuated both EFS-induced contractions. Cholera toxin (CTX, G(s) inactivator) also decreased the amplitudes of EFS-induced off and on contractions. However, phospholipase inhibitors did not affect these contractions. Pinacidil (a K(+) channel opener) decreased these contractions, and tetraethylammonium (TEA, K(+) (Ca) channel blocker) increased them. These results suggest that EFS-induced on and off contractions can be mediated by the activations Gi or Gs proteins, and that L-type Ca(2+) channel may be activated by G-protein alpha subunits. Furthermore, K(+) (Ca)-channel involve in the depolarization of esophageal smooth muscle. Further studies are required to characterize the physiological regulation of Ca(2+) channel and to investigate the effects of other K(+) channels on EFS-induced on and off contractions.
منابع مشابه
جریانهای یونی کانالهای پتاسیمی و کلسیمی در سلولهای ایزوله شده عضله صاف سمینال وزیکول خوکجه و مهاراین جریانها بوسیله Glibenclamide
Smooth muscle cells of seminal vesicle exhibit excitatcry junction patential on nerve stimulation and can fire evoked) action potential (1). However) the type of ion channels that underlie this electrical activity have not been described. I have investigated the type and pharmacology of ion channel in freshly isolated smooth muscle cells from the guinea-pig seminal vesicle using whole-cell patc...
متن کاملMLCK and PKC Involvements via Gi and Rho A Protein in Contraction by the Electrical Field Stimulation in Feline Esophageal Smooth Muscle.
We have shown that myosin light chain kinase (MLCK) was required for the off-contraction in response to the electrical field stimulation (EFS) of feline esophageal smooth muscle. In this study, we investigated whether protein kinase C (PKC) may require the on-contraction in response to EFS using feline esophageal smooth muscle. The contractions were recorded using an isometric force transducer....
متن کاملContribution of potassium channels, beta2-adrenergic and histamine H1 receptors in the relaxant effect of baicalein on rat tracheal smooth muscle
Objective(s): Baicalein, a compound extracted from a variety of herbs, showed various pharmacological effects. This study evaluated the relaxant effects of baicalein and its underlying molecular mechanisms of action on rat’s isolated tracheal smooth muscle.Materials and Methods: Tracheal smooth muscle were contracted by 10 μM methacholin...
متن کاملRegional differences in cholinergic regulation of potassium current in feline esophageal circular smooth muscle.
Potassium channels are important contributors to membrane excitability in smooth muscles. There are regional differences in resting membrane potential and K(+)-channel density along the length of the feline circular smooth muscle esophagus. The aim of this study was to assess responses of K(+)-channel currents to cholinergic (ACh) stimulation along the length of the feline circular smooth muscl...
متن کاملIon channel diversity in the feline smooth muscle esophagus.
We have characterized ion-channel identity and density differences along the feline smooth muscle esophagus using patch-clamp recording. Current clamp recording revealed that the resting membrane potential (RMP) of esophageal smooth muscle cells (SMC) from the circular layer at 4 cm above the lower esophageal sphincter (EBC4; LES) were more depolarized than at 2 cm above LES. Higher distal Na(+...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology
دوره 13 5 شماره
صفحات -
تاریخ انتشار 2009